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Abstract. Spectral decompositions for the evolution operator on an energy shell in phase space are
constructed for the free motion on compact 2D surfaces of constant negative curvature. Applications
to quantum chaos and in particular to the recently proposed ballistic σ -model are briefly discussed.

1. Introduction

The dynamics of a Hamiltonian system can be described either in terms of the trajectories
x0 → x(t) = Utx0 in the phase space, or by specifying the laws of evolution of a function
ϕ(x) on the phase space: ϕ → Ûtϕ. The evolution operator Ût , which advances a function
along the trajectories, is defined by

Ûtϕ(x) = ϕ(Utx) = ϕ(x(t)).

Quantum mechanics has a natural relation to the trajectory based approach through
Feynman’s path integral. In the semiclassical limit the path integral can be approximated
by the saddle point contributions (which turn out to be the classical orbits) and leads to the
Gutzwiller trace formula [1] for the Green function of the quantum mechanical Hamiltonian.
This is a useful tool for studying such problems as the quantum energy level correlations but it
requires knowledge of the long periodic orbits in order to obtain the correlations at small energy
differences [2,3]. The situation is particularly bad in chaotic systems, where the periodic orbits
proliferate exponentially with length. In practice some uncontrolled approximations about
correlations of actions for different periodic orbits are made to get the analytical results.

In contrast, the flow based approach seems suitable for studying the behaviour of chaotic
systems at long times when due to the decay of correlations the dynamics becomes trivial.
To use this approach in quantum chaos two problems however need to be overcome. First,
it is unclear how to relate the quantum mechanics to the evolution operator since there is no
analogue of the Feynman path integral. Second, one needs to be able to calculate various
properties of the evolution operator which are naturally formulated in terms of the spectral
decomposition of Ût in decaying eigenmodes.

The first problem has recently been addressed in [4,5] where it has been conjectured that
the (suitably averaged) correlation functions of the quantum energy levels and/or quantum
eigenfunctions can be generated from an effective action of nonlinear σ -model type involving
the Liouville operator L̂ = d

dt Ût (the so-called ‘ballistic’ σ -model). The inspiration for
this approach comes from the well developed theory of weakly disordered metals, where
the disorder averaged properties of an ensemble of macroscopically identical systems are
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calculated using a similar σ -model with a diffusion operator instead of the Liouvillian one.
(See [6, 7] for a detailed discussion of the diffusive case.)

Our paper is devoted to the second problem. In particular we compute a generalized
spectral decomposition of the evolution operator

Ût =
∑
λ

eλt |λ〉〈λ̃| (1)

for a class of ‘model’ chaotic systems, namely the free motion on two-dimensional compact
surfaces with constant negative curvature.

For mixing systems the only square integrable eigenfunctions of Ût are the constant
functions (see appendix A). The eigenfunctions |λ〉 entering the spectral decomposition belong
to a larger spaceC∞(M)∗ of distributions and can be obtained from the residues of the analytical
continuation of matrix elements of the resolvent of L̂ (see section 2). The procedure was
suggested by Ruelle [8] and was successfully used to study the dynamics of some chaotic
maps (see [9–12]). The eigenvaluesλ entering the spectral decomposition are sometimes called
‘Ruelle resonances’. For our model dynamical system the resonances can be found using the
Selberg trace formula to relate the classical and quantum zeta-functions [13]. This approach
however does not provide the eigenmodes, which we compute using the representation theory
of SO(2, 1).

The rest of the paper is organized as follows. We start by outlining the Ruelle procedure for
flows, concentrating on criteria for convergence of the resulting decomposition (section 2). We
then introduce geodesic flows on constant negative-curvature surfaces (section 3), summarize
the important facts from the representation theory of SO(2, 1) and proceed to obtaining the
spectral decomposition (section 4, equation (36)). This decomposition is used to refine
approximations of the decay of correlations for geodesic flows (section 5.1) and relate the
evolution of particle density on the configuration space to the Laplacian operator (section 5.2).
To conclude we discuss the regularization of the Liouvillian operator entering the ballistic
σ -model (section 6.2). Some technical details are relegated to the appendices.

2. Decompositions of evolution operators for general mixing systems

2.1. Spectral decompositions

Consider a Hamiltonian system on a phase space T ∗N with coordinates x = (q, p)whereN is
a smooth compact manifold parametrized by q andp is the momentum. When the Hamiltonian
H does not depend on time energy is conserved and the trajectories lie on surfacesM of constant
energy. We study the restriction of the flow Ut to a constant-energy shell M for some value of
the energy. If dH is non-zero on M the Liouvillian measure dp dq induces a measure dµ on
M according to dµ dH = dp dq [13]. By Liouville’s theorem this measure is preserved by
the flow Ut .

The evolution operator Ût advances a function ϕ(x) : M → C along the flow

Ûtϕ(x) = ϕ(Utx) = eL̂tϕ(x)

where for a Hamiltonian system the Liouville operator L̂ is given by

L̂ϕ = d

dt

∣∣∣∣
t=0

Ûtϕ = {H,ϕ} (2)

with { , } being the Poisson bracket.
The operator Ût is unitary with respect to the scalar product

〈ξ(x)|ϕ(x)〉 =
∫
x∈M

ξ(x)ϕ(x) dµ (x) (3)
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since µ is preserved by Ut . A natural space for Ût is the Hilbert space L2(M) of square
integrable functions onM , while L̂ preserves a smaller space of compactly supported infinitely
differentiable functions C∞(M).

We would like to find a spectral decomposition (1) for the operator Ût in terms of its
eigenvalues eλt and projectors 〈λ̃| onto its eigenfunctions |λ〉. This would enable us to establish
the evolution of a function ϕ(x):

Ût |ϕ〉 =
∑
λ

eλt |λ〉〈λ̃|ϕ〉.

Since the operator Ût is unitary on L2(M) it can only have eigenvalues which lie on the unit
circle. On the other hand, in a mixing chaotic system (definitions and properties of mixing
systems are given in appendix A) all deviations from a constant value decay, implying the
existence of modes corresponding to eigenvalues with modulus less than one. The resolution
of this apparent paradox lies in observing that theL2(M) eigenfunctions of Ût do not necessarily
form a basis inL2(M)or even inC∞(M). In fact, for a mixing system the only square integrable
eigenfunctions of Ût are the constant functions which have the eigenvalue 1 (appendix A). In
order to find a spectral decomposition for Ût we need to extend the Hilbert space L2(M) to a
rigged Hilbert space as described below. A similar approach was successfully employed for
various maps (see e.g. [9, 10]).

2.2. Rigged Hilbert spaces

A Hilbert space H may be extended to the set of linear functionals on a suitable dense subspace
S. The resulting space S

∗ is called the rigging of H over S. We denote by f [ϕ] the value of
the linear functional f ∈ S

∗ on the vector ϕ ∈ S.
A vector g ∈ H may be naturally embedded in S

∗ as g[ϕ] = 〈ϕ|g〉, so we get a sequence
of spaces S ⊂ H ⊂ S

∗. We make the above embedding explicit [9] and denote the functional
f ∈ S

∗ by |f 〉, its value on a vector ϕ ∈ S being f [ϕ] = 〈ϕ|f 〉. We also introduce the notation
〈f |ϕ〉 for the antilinear functional f [ϕ].

We search for eigenfunctionals of the evolution operator Ût in the rigging C∞(M)∗ of
L2(M) over C∞(M). The evolution operator is extended to C∞(M)∗ by

〈ϕ|Ûtf 〉 = 〈Û−tϕ|f 〉 where |f 〉 ∈ C∞(M)∗ and ϕ ∈ C∞(M).

Since Ût does not preserve any scalar product in C∞(M)∗ its eigenvalues need not lie on the
unit circle.

We shall construct decompositions for the correlation function

〈ξ |Ût |ϕ〉 =
∫
M

dµξ(x)Ûtϕ(x)

in a subset of eigenfunctionals {|fλ〉} from C∞(M)∗:

〈ξ |Ût |ϕ〉 =
∑
λ

eλt 〈ξ |fλ〉〈f−λ|ϕ〉 Ût |fη〉 = eηt |fη〉. (4)

In general (4) only has asymptotic meaning (see section 2.3 for details), and will only converge
when t > 0 and ξ and ϕ belong to a subspace T of C∞(M). For the free motion on compact
surfaces of constant negative curvature we find such a subspace which is dense in the set of
infinitely differentiable functions. Note that the eigenfunction |f−λ〉 with the eigenvalue e−λt

appears in (4) due to the unitarity condition (Ût )
+ = U−t , which leads to another expansion

for the correlation function:

〈ξ |Ût |ϕ〉 = 〈ϕ|Û−t |ξ〉 =
∑
λ

e−λt 〈ξ |f−λ〉〈fλ|ϕ〉 (5)
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converging when t < 0 and ξ, ϕ ∈ T.
Decompositions (4, 5) appear naturally in connection with the correlation function

〈ξ |(L̂− z)−1|φ〉 of the resolvent of L̂.

2.3. Resolvent method for calculating the evolution operator decompositions

Choosing an integral representation for the resolvent of the Liouville operator converging when
Re z > 0

R−(z) = −
∫ ∞

0
e−zT ÛT dT = (L̂− z)−1 (6)

and assuming decomposition (4) we obtain for the correlation function of the resolvent

Fξ,ϕ(z) ≡ 〈ξ |R−(z)|ϕ〉 =
∑
λ

〈ξ |fλ〉〈f−λ|ϕ〉
λ− z

(7)

where ξ, ϕ ∈ T.
Conversely decomposition (4) can be constructed by analytically continuing F to the left-

hand half of the z-plane and analysing its singularities and residues. The positions of the poles
dictate the rate of decay of the correlation function of the evolution operator [8]. The values
of λ in decomposition (4) are called Ruelle resonances.

Each term in decomposition (4) is well defined for ξ, ϕ ∈ C∞(M) when

the position of the poles of Fξ,ϕ(z)

does not depend on the choice of ξ or ϕ. (8)

A famous conjecture due to Ruelle [8] states that the poles of the resolvent for a mixing system
do indeed satisfy this condition.

The sum in (4) converges if in addition the residues Res(λ, Fξ,ϕ) grow slowly enough
when |λ| → ∞:

lim
R→∞

∑
R<|λ|<∞

eλtRes(λ, Fξ,ϕ) = 0. (9)

The set T will comprise of functions in C∞(M) which satisfy condition (9).
To prove the convergence we consider the integral of Fξ,ϕ,t (z) = ezt 〈ξ |R−(z)|φ〉 for ξ

and φ in T around the contour |z| = R for a given large R. In the limit R → ∞ this integral
converges due to (9) to

lim
R→∞

∫
|z|=R

Fξ,ϕ,t (z) dz = 2π i
∑
λ

Res(λ, Fξ,ϕ,t ) = 2π i
∑
λ

eλtRes(λ, Fξ,ϕ) (10)

where the sum is over all the poles λ other than ∞.
Since all the poles are in the left-hand half of the z-plane the contour can be deformed to

go along the line Re z = a for a fixed a > 0 leading to∫
Re z=a

Ft (z) dz =
∫

Re z=a
ezt
∫ ∞

T=0
e−zT 〈ξ |ÛT |ϕ〉 dT dz

=
∫ ∞

T=0

∫ ∞

y=−∞
e(a+iy)(t−T ) dy 〈ξ |ÛT |ϕ〉 dT

=
∫ ∞

T=0
δ(t − T )〈ξ |ÛT |ϕ〉 dT

= 〈ξ |Ût |ϕ〉 for t > 0. (11)
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From equation (10) we get the decomposition into residues

〈ξ |Ût |ϕ〉 = 2π i
∑
λ

eλtRes (λ, F ) (12)

which converges absolutely for t > 0.
The individual terms in (12) exist for arbitrary ξ, ϕ ∈ C∞(M) but the series converges

only for ξ, ϕ ∈ T. The residue Res(λ, F ) is a linear functional of ξ and an antilinear functional
of ϕ. We define the operator K̂λ : C∞(M) → C∞(M)∗ by

2π iRes(λ, F ) = 〈ξ |K̂λ|ϕ〉 ξ, ϕ ∈ C∞(M)

so that

〈ξ |Ût |ϕ〉 =
∑
λ

eλt 〈ξ |K̂λ|ϕ〉 ξ, ϕ ∈ T

and K̂λ|ϕ〉 is an eigenfunctional of Ût

Ût K̂λ|ϕ〉 = eλt K̂λ|ϕ〉.
Let {|f k

λ 〉} be a basis for the eigenspace corresponding to the eigenvalue eλt , i.e. the image of
C∞(M) under K̂λ.

K̂λ|ϕ〉 =
∑
k

〈ck|ϕ〉|f k
λ 〉 with Ût |f k

λ 〉 = eλt |f k
λ 〉.

Substituting this expression into (12) we obtain

〈ξ |Ût |ϕ〉 =
∑
λ

〈ξ |K̂λ|ϕ〉

=
∑
λ

∑
k

〈ξ |f k
λ 〉〈f k

−λ|ϕ〉 ξ, ϕ ∈ T t > 0 (13)

where by virtue of the unitarity of the evolution operator the coefficients 〈ck|ϕ〉 are given by
eigenfunctionals |f k

−λ〉 of Ût with eigenvalues e−λt .

〈ck|ϕ〉 = 〈ϕ|f k

−λ〉.
Equation (13) reduces to (4) in the non-degenerate case when the image of K̂λ is one
dimensional.

For arbitrary ξ and φ in C∞(M) the convergence of decomposition (4) is asymptotic:∣∣∣∣〈ξ |Ut |ϕ〉 −
∑

Re λ�−a
eλt 〈f−λ|ϕ〉〈ξ |fλ〉

∣∣∣∣ < C(a)e−at a > 0. (14)

This inequality holds since the integral∫ ∞

0

(
〈ξ |Ut |ϕ〉 −

∑
Re λ�−a

eλt 〈f−λ|ϕ〉〈ξ |fλ〉
)

e−zt dt

is analytic in the region Re z > −a of the z-plane.
A similar procedure starting with the representation R+(z) for the resolvent converging at

Re z < 0

R+(z) =
∫ 0

−∞
ezt Ût dt = (L̂− z)−1 (15)

gives the decomposition (5), which converges absolutely for t < 0 when the conditions (8),
(9) are met.
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2.4. Evolution operator at long times

We can use the decompositions (4) and (5) to study the approach to equilibrium at long times
for mixing dynamical systems.

We show below that for ξ and ϕ in T the function C(a) in (14) is independent of a. The
behaviour at long future times may be approximated by retaining only the terms in (4) where
λ has a small negative real part.

〈ξ |Ût |ϕ〉 =
∑

Re λ�−a
eλt 〈f−λ|ϕ〉〈ξ |fλ〉 +

∑
Re λ<−a

eλt 〈f−λ|ϕ〉〈ξ |fλ〉

≈
∑

Re λ�−a
eλt 〈f−λ|ϕ〉〈ξ |fλ〉

= 〈ϕ|1〉〈1|ξ〉 +
∑

0>Re λ�−a
eλt 〈f−λ|ϕ〉〈ξ |fλ〉 (16)

where we have separated out the the contribution from the constant L2(M) eigenfunction with
λ = 0. For a mixing system the latter is the only non-decaying eigenfunction. By the absolute
convergence of the sum (4) for t > 0 the discarded terms are bounded by∣∣∣∣ ∑

Re λ<−a
eλt 〈f−λ|ϕ〉〈ξ |fλ〉

∣∣∣∣ � e−at ∑
Re λ<−a

|〈f−λ|ϕ〉〈ξ |fλ〉| < e−atC

for some constant C and hence decay faster than e−at .
For long past times we work analogously from (5) rather than (4) to obtain

〈ξ |Ût |ϕ〉 ≈ 〈ϕ|1〉〈1|ξ〉 +
∑

0<Re (−λ)�b

e−λt 〈fλ|ϕ〉〈ξ |f−λ〉 for t → −∞.

Here the terms which decay faster than ebt as t → −∞ have been discarded.

3. Surfaces of constant negative curvature

We will use the resolvent method described in the previous section to obtain a spectral
decomposition for the evolution operator of a ‘model’ chaotic system. The simplest systems
which are strongly chaotic (and in particular mixing) are the free motion on compact 2D
surfaces of constant negative curvature.

The hyperbolic plane N plays the role of a universal cover for these surfaces. It can be
embedded in Minkowski space where the metric is

ds2 = − dx2
1 + dx2

2 + dx2
3

as the surface satisfying the equation

−x2
1 + x2

2 + x2
3 = −1.

We shall consider the free motion on compactifications of N formed by quotienting it
under the action of some discrete group as described below. We start by analysing the free
motion of a particle on the hyperbolic plane itself. This dynamical system has the phase space
T ∗N and is described by the Hamiltonian H = p2

2m , which is just the kinetic energy of the
particle. The trajectories for this dynamical system are given by the geodesics of the surface
N . For a particle with unit mass m = 1, the constant-energy surface M with energy E = 1

2
consists of the points with momenta of unit modulus (and hence also unit speed). Thus the
energy shell M is the unit-cotangent bundle of the hyperbolic plane. Changing the energy
amounts to a rescaling which leaves the trajectories unchanged and only alters the rate at
which they are traversed.
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The group of isometries of the hyperbolic plane G = SO(2, 1) acts simply transitively
on the points of the energy shell. Let us take as a base point in M the point O = (q, p) where
the position q is given by (0, 0, 1) and the momentum p is (1, 0, 0). A point x on the energy
shell may be identified with the unique element of G which takes O to x = gO. In this way
the constant-energy shell can be identified with the elements of G. The above construction
gives a diffeomorphism from the topological group G to the energy shell M .

We choose a basis for the Lie algebra g of G consisting of the matrices

P =
( 0 1 0

1 0 0
0 0 0

)
Q =

( 0 0 1
0 0 0
1 0 0

)
K =

( 0 0 0
0 0 1
0 −1 0

)
. (17)

An element g ∈ G may be written as a product [14]

g(φ, τ, ψ) = eKφePτ eKψ. (18)

The parameters τ , φ and ψ are known as the Euler angles. Note that τ and φ give the position
in polar coordinates:

(x1, x2, x3) = (cosh τ, sinh τ cosφ, sinh τ sin φ)

while the angle ψ gives a consistent way of parametrizing the direction of the momentum.
After a time t a free particle at the point O on the constant energy surface advances along

the geodesic to which it belongs to the point htO where ht = eP t . The point gO moves to
ghtO; hence on identifying M with G the evolution corresponds to right multiplication by the
element ht . This one-parameter group of transformations

g �→ Ut(g) = ght

is the geodesic flow on G. The measure µ on M which is invariant under the geodesic flow
Ut is the Haar measure dg of the group G. This measure is invariant under right and left
multiplication by elements of the group. The Ut invariant scalar product for functions on G is
therefore given by

〈f1|f2〉 =
∫
g∈G

f1(g)f2(g) dg

= 1

4π2

∫ ∞

0

∫ 2π

0

∫ 2π

0
f1(φ, τ, ψ)f2(φ, τ, ψ) sinh τ dτ dφ dψ.

Finally we notice that right multiplication by elements in the rotation subgroupH = {eKψ }
only affects the direction of momentum and does not change the position of the particle.
Therefore we can identify the hyperbolic plane N with the set of right cosets G/H .

We now turn to the free motion on general surfaces of constant negative curvature which
are constructed by taking a tessellation of the hyperbolic plane G/H and identifying the
tessellating shapes (the fundamental domains). Let2 be the group of transformations mapping
the tessellating shapes to each other. For every γ ∈ 2 the points γgH and gH of the hyperbolic
plane are identified. The points of the quotient surface formed under this identification are
labelled by double cosets in 2\G/H . When the directions of momentum at each of the points
are included the constant-energy surface M = 2\G is formed. Since the free motion is given
by the right shift by ht it is not affected by quotienting on the left by the subgroup 2, so on the
constant-energy surface 2\G the geodesic flow is given by

Ut(2g) = 2ght . (19)
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4. Decomposition of the evolution operator for the geodesic flows

In this section we use the representation theory of G = SO(2, 1) to find a decomposition of
the form (7) for the resolvent for the geodesic flow on 2\G.

The right regular representation TR(h) of G on L2(2\G) is defined by

TR(h)ϕ(2g) = ϕ(2gh) where ϕ ∈ L2(2\G).
It can be decomposed as a direct sum of irreducible unitary representations T y , which

leads to a splitting of L2(2\G) into a direct sum of the spaces H(T y) on which T y acts:

L2(2\G) = ⊕
y∈Y

H(T y). (20)

As the geodesic flow Ut defined in (19) amounts to right multiplication by the group
element ht the evolution operator Ût coincides with TR(ht ) and leaves H(T y) invariant, leading
to the decomposition

Ût =
∑
y∈Y

T y(ht ). (21)

Substituting (21) into (6) we obtain the resolvent for the geodesic flow:

R−(z) = −
∫ ∞

0
e−zt Ût dt =

∑
y∈Y

R
y
−(z) (22)

where Ry
−(z) = − ∫∞

0 e−ztT y(ht ) dt .
The rest of this section is organized as follows. In section 4.1 we discuss the unitary

irreducible representations T y . In section 4.2 we study the decomposition (20) and relate it to
the spectra of the Laplacian on the quotient surface 2\G/H . In section 4.3 we calculate the
integrals Ry

−(z) for each of these irreducible representations and in section 4.4 we combine all
the results to find R−(z).

4.1. Irreducible representations of SO(2,1)

Let T be an arbitrary unitary representation of G = SO(2, 1) on the Hilbert space H(T ) with
scalar product 〈 | 〉. The Casimir operator is defined on H(T ) by

5(T ) = L2
P (T ) + L2

Q(T )− L2
K(T )

where LX(T ) is the Lie derivative of T in the direction X ∈ g and P,Q,K ∈ g are as
defined in (17). This operator commutes with each of the T (g) [15] and therefore must be a
scalar multiple of the identity on each of the irreducible representations T y . It is convenient
to denote by T ρ the unitary irreducible representation on which this scalar is − 1

4 − ρ2, i.e. for
all v ∈ H(T ρ) we have

5(T ρ)v = (− 1
4 − ρ2)v. (23)

The following values of ρ are allowed [15]:

• Im ρ = 0 and Re ρ � 0 (the principal series)
• Re ρ = 0 and Im ρ ∈ (0, 1

2 ) (the complementary series)
• Re ρ = 0 and Im ρ ∈ N each corresponding to a pair of inequivalent representations (the

discrete series).

In addition we have the one-dimensional identity representation I for which 5(I)v = 0 for
v ∈ H(I ).



Spectral decompositions for evolution operators 8961

Under the action of the compact Abelian subgroupH = {eKt } the representation T ρ splits
into one-dimensional irreducible representations. Let |n〉 ∈ H(T ρ) be a vector in one such
one-dimensional representation with

T ρ(eKt )|n〉 = eint |n〉. (24)

It is a fact [16] that in a representation T ρ there is at most one vector |n〉 for each value n and
they can be normalized to form an orthonormal basis for the space H(T ρ). We also use the
notation |ρ, n〉, when the irreducible representation to which |n〉 belongs needs to be specified.
For the representations of the principal and complementary series the value of n ranges over
all the integers. For the discrete series, one of the pair has a basis consisting of |n〉 where
n � Im ρ and the other where n � Im ρ [16].

A vector |ϕ〉 in H(T ρ) may be expanded in the basis {|n〉} as

|ϕ〉 =
∑
n

〈n|ϕ〉|n〉. (25)

In the basis {|n〉} the matrix elements for the representation T ρ are given by [14]

〈m|T ρ(g)|n〉 = eimφeinψBl
mn(cosh τ)

where l = 1
2 + iρ and Bl

mn(cosh τ) are the Jacobi functions.

4.2. Decomposition of L2(2\G)
We now consider the decomposition of L2(2\G) into irreducible representations T ρ for a
particular quotient surface 2\G/H .

Suppose that the decomposition (20) of L2(2\G) has Nρ copies of the irreducible
representation T ρ , labelled by s ∈ {1, . . . , Nρ}:

L2(2\G) = ⊕
ρ

(
Nρ⊕
s=1

H(T ρ;s)
)
. (26)

Each H(T ρ;s) has a basis {|ρ, n; s〉} as described in section (4.1). From (23) and (24) we deduce
that the space spanned by the vectors {|ρ, n; s〉 where s = 1, . . . , Nρ} is the intersection of the
eigenspaces of 5(TR) and LK(TR) with the eigenvalues − 1

4 − ρ2 and in respectively.

5(TR)|ρ, n; s〉 = (− 1
4 − ρ2)|ρ, n; s〉

Lk(TR)|ρ, n; s〉 = in|ρ, n; s〉. (27)

The functions |ρ, 0; s〉 are invariant under multiplication on the right by elements of H
and therefore can be viewed as functions inL2(2\G/H). On this space the Casimir operator5
reduces to the Laplacian =̂, hence the values ofρ occuring in (26) correspond to the eigenvalues
ε(ρ) = − 1

4 −ρ2 of the Laplacian =̂ on the quotient surface 2\G/H . Nρ is the multiplicity of
the eigenvalue ε(ρ) and |ρ, 0; s〉 are its eigenfunctions. It is known that the spectrum ?2 of
=̂ on a compact surface 2\G/H is discrete and is bounded above by zero. It also contains the
eigenvalue 0, which corresponds to the the constant eigenfunction. Hence (26) takes the form

L2(2\G) = ⊕
− 1

4 −ρ2∈?2

(
Nρ⊕
s=1

H(T ρ;s)
)
. (28)

A differential equation for the eigenfunctions |ρ, n; s〉 is obtained by unwrapping a
function in L2(2\G) to give a periodic function on the whole group χ : G → C which
obeys

χ(γg) = χ(g) for all γ ∈ 2.
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Using Euler’s coordinates (18) on G in (27) we deduce that the unwrapping of the function
|ρ, n; s〉 has the form χ

ρ,n
s (τ, θ)einψ , where χ

ρ,n
s (τ, θ) obeys the second-order differential

equation(
1

sinh τ

∂

∂τ
sinh τ

∂

∂τ
+

1

sinh2 τ

(
∂2

∂2φ
− 2in cosh τ

∂

∂φ
− n2

))
χρ,n
s =

(
−1

4
− ρ2

)
χρ,n
s .

(29)

4.3. Spectral decompositions for the irreducible representations

We now find the correlation functions of the resolvents Rρ
−(z) for each of the irreducible

representations T ρ and obtain a spectral decomposition for the operator T ρ(ht ).
Expanding

〈ξ |Rρ
−(z)|ϕ〉 = −

∫ ∞

0
e−zt 〈ξ |T ρ(ht )|ϕ〉 dt

in the basis {|n〉}, we get

〈ξ |Rρ
−(z)|ϕ〉 =

∫ ∞

0
e−zt ∑

m,n

〈ξ |m〉〈m|T ρ(ht )|n〉〈n|ϕ〉 dt. (30)

The matrix element 〈m|T ρ(ht )|n〉 can be written as a sum over the exponentials eλt where

λ ∈ {l, l − 1, l − 2, . . . ; l, l − 1, l − 2, . . .} = ?ρ (31)

and

〈m|T ρ(ht )|n〉 = Bl
mn(cosh t) =

∑
λ∈?ρ

cλmneλt . (32)

Substituting (32) into the resolvent (30) we obtain

〈ξ |Rρ
−(z)|ϕ〉 =

∑
λ∈?ρ

∫ ∞

0
e(λ−z)t

∑
m,n

〈ξ |m〉cλmn〈n|ϕ〉 dt

=
∑
λ∈?ρ

∑
m,n

〈ξ |m〉cλmn〈n|ϕ〉
λ− z

=
∑
λ∈?ρ

〈ξ |K̂λ|ϕ〉
λ− z

. (33)

The operators K̂λ determining the residue at the pole λ ∈ ?ρ are given by

K̂λ =
∑
m,n

|m〉cλmn〈n|.

The matrix elements cλmn may be split into a product (appendix B) cλmn = aλmb
λ
n, which enables

us to write (33) in the form

〈ξ |Rρ
−(z)|ϕ〉 =

∑
λ∈?ρ

∑
n〈n|bλn|ϕ〉∑m〈ξ |aλm|m〉

λ− z

=
∑
λ∈?ρ

〈f−λ|ϕ〉〈ξ |fλ〉
λ− z

(34)

where λ runs through the set ?ρ (31) and

|fλ〉 =
∑
m

aλm|m〉 |f−λ〉 =
∑
m

bλm|m〉
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are eigenvectors of T ρ(ht ):

T ρ(ht )|fη〉 = eηt |fη〉.
The coefficients aλm and bλm where λ = l, l are found explicitly in appendix B along with a
procedure for generating the eigenfunctionals for the other values of λ ∈ ?ρ .

The eigenfunctionals |fλ〉 and |f−λ〉 are linear functionals on the space S
ρ ⊂ H(T ρ) of

test vectors |ϕ〉 = ∑
n cn|ρ, n〉 ∈ H(T ρ), where the coefficients cn → 0 as |n| → ∞ faster

than any power of n, i.e. lim|n|→∞ cnn
k = 0 for all k ∈ N. By comparing (34) with (7) we

arrive at the spectral decomposition for T ρ(ht )

T ρ(ht ) =
∑
λ∈?ρ

eλt |fλ〉〈f−λ|. (35)

This decomposition converges absolutely for t > 0 for test vectors in the dense subspace
T
ρ ⊂ S

ρ of vectors of the form |ϕ〉 = ∑K
n=−K cn|ρ, n〉 ∈ H(T ρ) for some K (appendix C).

4.4. Spectral decompositions of the evolution operators for the geodesic flows

On combining (35) with (28) we obtain the central result of this paper, a spectral decomposition
for Ût :

Ût = TR(ht ) =
∑

− 1
4 −ρ2∈?2

∑
λ∈?ρ

Nρ∑
s=1

eλt |f ρ;s
λ 〉〈f ρ;s

−λ | (36)

where ?2 is the spectrum of the Laplacian on 2\G/H containing eigenvalues − 1
4 − ρ2 with

multiplicities Nρ and where ?ρ is given by equation (31) and also shown in figure 1. The
functionals

|f ρ;s
λ 〉 =

∑
n

aλn |ρ, n; s〉

|f ρ;s
−λ 〉 =

∑
n

bλn|ρ, n; s〉

are the eigenfunctionals of Ût :

Ût |f ρ;s
η 〉 = eηt |f ρ;s

η 〉.
The functions |ρ, n; s〉, s = 1, . . . , Nρ form an orthogonal basis in the space of solutions of
the linear differential equation (29). The coefficients are obtainable by expanding Bl

mn(cosh t)
in powers of eλt (see equation 32) and are given explicitly for λ = l, l in (B.7).

The eigenfunctionals |f ρ;s
η 〉 belong to the space C∞(2\G)∗ and act on test functions in

⊕− 1
4 −ρ2∈?2

S
ρ = C∞(2\G). The decomposition (36) converges for functions in a dense

subspace

T =
{
|ϕ〉 =

∑
− 1

4 −ρ2∈?2

Nρ∑
s=1

K∑
n=−K

cn,ρ;s |ρ, n; s〉 for some K

}
⊂ C∞(2\G) (37)

of test functions whose unwrappings have only a finite number of Fourier components in the
angle ψ (appendix C).

The eigenvalues entering (36) could also be obtained by comparing classical orbit
expansions for the traces of the resolvents of L̂ and =̂ [17].
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Figure 1. The poles λ = − 1
2 − iρ − k (crosses) of the resolvent give the eigenvalues eλt of the

evolution operator appearing in decomposition (36). These poles are related to the eigenvalues
−ε = 1

4 + ρ2 of −=̂ (open circles). The rate of decay eλ0 t at long times is determined by the pole
λ0 with the least negative real part.

5. Properties of the evolution operators for the geodesic flows

5.1. Decay of correlations

At long times only the leading terms with k = 0 in each of the ?ρ in the spectral
decomposition for Ût (36) remain significant (see section 2.4). Therefore as t → ∞, for
ξ, ϕ ∈ T ⊂ C∞(2\G)

〈ξ |Ût |ϕ〉 ≈
∑

− 1
4 −ρ2∈?2

∑
s

e(−
1
2 ±iρ)t 〈f ρ;s

1
2 ±iρ

|ϕ〉〈ξ |f ρ;s
− 1

2 ±iρ
〉.

Separating out the eigenvalue with λ = 0 for a compact quotient surface where the dynamics
is mixing we find that

Ût |ϕ〉 ≈ 〈1|ϕ〉〈ξ |1〉 +
∑

0 �=− 1
4 −ρ2∈?2

∑
s

e(−
1
2 ±iρ)t 〈f ρ;s

1
2 ±iρ

|ϕ〉〈ξ |f ρ;s
− 1

2 ±iρ
〉. (38)

The approach to equilibrium is governed by the eigenvalue(s) e(−
1
2 ±iρ)t in this expansion

with the largest modulus (see figure 1). There are two possibile cases distinguished by the
smallest non-zero eigenvalue −ε0 of −=̂.

(1) If −ε0 < 1
4 then the slowest-decaying term gives the decay rate eλ0t , where λ0 =

− 1
2 +

√
1
4 + ε0. For the non-constant part of the correlation function 〈ξ |Ût |ϕ〉 between

ξ, ϕ ∈ C∞(2\G) we have

〈ξ |Ût |ϕ〉 − 〈ξ |1〉〈1|ϕ〉 = O(eλ0t ). (39)

(2) If −ε0 >
1
4 then all the values of ρ in (38) are real and we get λ0 = − 1

2

〈ξ |Ût |ϕ〉 − 〈ξ |1〉〈1|ϕ〉 = O(e− t
2 ). (40)

By applying the result (14) to the geodesic flows we find that for arbitrary ξ, ϕ ∈ C∞(M)

|〈ξ |Ût |ϕ〉 − 〈ξ |1〉〈1|ϕ〉| < Ceλ0t .
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This is a classical result, proving the exponential decay of correlations for geodesic flows on
constant-negative-curvature surfaces (see e.g. [15] for a detailed discussion). Also from (14)
we get the other terms in the long-time asymptote:∣∣∣∣〈ξ |Ût |ϕ〉 − 〈ξ |1〉〈1|ϕ〉 −

∑
− 1

4 −ρ2∈?2

Nρ∑
s=1

∑
±

N∑
k=0

e(−
1
2 ±iρ−k)t 〈ξ |f ρ;s

− 1
2 ±iρ−k〉〈f

ρ;s
1
2 ±iρ+k

|ϕ〉
∣∣∣∣

< C(N)e(λ0−(N+1))t . (41)

5.2. Relation to the Laplacian

In addition to refining the long-time asymptotic form of the correlation function (41) the full
expansion (36) provides a more detailed description of the evolution of distribution functions.
Consider a smooth function C on 2\G which is independent of the momentum coordinate ψ
(hence belongs to the space T). As it evolves under Ût this function will acquire some angular
dependence but we will only be interested in the density on the configuration space, i.e. the
projection Ct = P̂ ÛtC where P̂ is the projector 2\G → 2\G/H :

P̂ χ = 1

2π

∫ 2π

0
χ dψ.

Expanding C as a linear combination of the eigenfunctions |ρ, 0; s〉 of the Laplacian for
the quotient surface

|C〉 =
∑

− 1
4 −ρ2∈?2

∑
s

〈ρ, 0, s|C〉|ρ, 0; s〉

and using

Ût |ρ, 0; s〉 = T ρ(ht )|ρ, 0; s〉
=
∑
n

|ρ, n; s〉〈ρ, n; s|T ρ(ht )|ρ, 0; s〉

=
∑
n

B
− 1

2 +iρ
n0 (cosh t)|ρ, n; s〉

combined with the following expressions for the matrix elements of the projection operator:

P̂ |ρ, n; s〉 = 0 n �= 0 P̂ |ρ, n; s〉 = |ρ, 0; s〉
we obtain for Ct

|Ct 〉 = P̂ Ût |C〉 =
∑

− 1
4 −ρ2∈?2

B
− 1

2 +iρ
00 (cosh t)

∑
s

〈ρ, 0, s|C〉|ρ, 0; s〉. (42)

Using the symbolic notation√
−=̂− 1

4 |ρ, 0; s〉 = ρ|ρ, 0; s〉
we rewrite (42) as

P̂ Ût |C〉 = B
− 1

2 +i
√

−=̂− 1
4

00 (cosh t)|C〉 (43)

which relates the Laplacian =̂ on the surfaces of constant negative curvature to the classical
dynamics in the configuration space.
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6. Conclusions

6.1. Summary of results

Decompositions for the evolution operators Ût of a general mixing dynamical system
on a manifold M were constructed following Ruelle’s prescription [8] using the analytic
continuation of the resolvent (6):

Fξ,ϕ(z) = −
∫ ∞

0
e−zT 〈ξ |ÛT |ϕ〉 dT .

It was proved that when conditions (8), (9) are met we have the following decompostions
of Ût :

〈ξ |Ût |ϕ〉 =
∑
λ

eλt
∑
k

〈f k

−λ|ϕ〉〈ξ |f k
λ 〉 convergent for t > 0

〈ξ |Ût |ϕ〉 =
∑
λ

e−λt ∑
k

〈f k
λ |ϕ〉〈ξ |f k

−λ〉 convergent for t < 0

where |f k
η 〉 are eigenfunctionals of Ût

Ût |f k
η 〉 = eηt |f k

η 〉
belonging to the space C∞(M)∗. They can be obtained from the residues of Fξ,ϕ(z) which are
positioned at λ and have the form

2π iRes(λ, Fξ,ϕ) =
∑
k

〈ξ |f k
λ 〉〈f k

−λ|ϕ〉.

On applying this method to the evolution operator Ût for the free motion on a compact
surface of constant negative curvature 2\G/H we obtained the decomposition (36) which is
convergent for ξ and ϕ in a dense subspace T ⊂ C∞(2\G) of functions whose unwrappings
onto functions of G have only a finite number of Fourier harmonics in the Euler angle ψ (see
equations (18), (37)). From this decomposition we obtained a refinement for the rate of decay
of correlations (41) for these systems.

We also found that the projection of the evolution operator P̂ Ût from 2\G to 2\G/H is
related to the Laplacian =̂ on the surface 2\G/H by

P̂ Ût = B
− 1

2 +i
√

−=̂− 1
4

00 (cosh t).

6.2. Consequences for the ballistic σ -model

Finally we discuss some consequences of the spectral decomposition (4) for the ballistic σ -
model [4, 5]. Without diving into the (still controversial) issue of the σ -model derivation and
its region of validity we quote below the result for the effective action (see [4, 5, 18] for a
detailed discussion):

S =
∫

dµ tr?W−1{L̂ + i(ω + i0)?}W (44)

where W(x) belongs to some (super-) group and ? is a particular matrix in this group obeying
?2 = 1. The detailed structure of the target space is somewhat involved and for the purpose
of our discussion it suffices to consider a toy model with W ∈ SU(2) and ? = diag(1,−1).
Then the target space is a two-dimensional sphere S2 = SU(2)/U(1) parametrized by the
matrices Q = W−1?W . The action (44) does not depend on the parametrization of S2 in
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terms ofW . Indeed, introducing the two-formQ∗V on the energy shellM obtained by pulling
back the invariant volume V on S2 by the function Q(x) : M → S2 we get for the action

S =
∫
M

(Q∗V ) ∧ p dq + i(ω + i0) tr(?Q) dµ

where p dq is the antiderivative of the simplectic structure dp ∧ dq. If Q∗V is exact (and it is
certainly closed) the first term does not depend on the choice of the antiderivative but only on
the simplectic structure dp ∧ dq.

It is universally believed that some sort of regularization should supplement the effective
action (44). It was conjectured [5] that in the limit of a vanishing regulator the eigenvalues of
the regularized Liouvillian operator approach the Ruelle resonances (which were refered to as
‘eigenvalues of the Perron Frobenius operator’ in [5]).

We would like to point out that this conjecture must be further clarified due to the existence
of the two inequivalent sets of Ruelle resonances. One set of resonances is in the left-hand half
of the complex plane, while the other is in the right. These two sets originate from the different
branches of the resolvent given by the two integral representations (equations (6) and (15)
respectively). As a result there exist two non-equivalent regularizations of the operator L̂.
Denoting byLreg the regularization of L̂with eigenvalues close to the Ruelle resonances in the
left-hand half plane and observing that the operator −L+

reg has eigenvalues close to the Ruelle
resonances in the right-hand half plane we suggest that the two regularizations of L are Lreg

and −L+
reg.

We suggest the following structure for the regularized operator in the target space:

L̂ + i(ω + i0)? −→
(
Lreg + iω 0

0 −L+
reg − iω

)
(45)

which ensures the convergence of the action (44). Expanding the action (44) near Q = ?

as W = 1 +

(
0 w

−w̄ 0

)
we verify that the choice (45) ensures that the quadratic part of the

action δ2S is non-positively defined:

δ2S = −
∫

dµ (w̄,w)

(
0 Lreg

−L+
reg 0

)(
w

w̄

)
.

Note, that a similar structure for the regularized action appeared in the model with diffusive
scattering [19].
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Appendix A. Mixing dynamical systems

A dynamical system (M,Ut , µ) is mixing if for any two sets A,B ⊂ M

lim
t→∞µ(UtA ∩ B) = µ(A)µ(B). (A.1)

For a mixing system the only square integrable eigenfunctions of Ût are the constant
functions which have the eigenvalue 1. The proof [20] of this result is reproduced below.

We write (A.1) in terms of the characteristic functions χA and χB of the setsA andB (The
characteristic function χC of a set C takes on the value χC(x) = 1 if x ∈ C and 0 otherwise).

lim
t→∞〈ÛtχA|χB〉 = 〈χA|1〉〈1|χB〉. (A.2)
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Since the space of linear combinations of characteristic functions is dense in the space of square
integrable functions (A.2) must also be true for f, g ∈ L2(M)

lim
t→∞〈Ûtf |g〉 = 〈f |1〉〈1|g〉. (A.3)

Let f be an eigenfunction of Ût with eigenvalue eλt and g = 1, then (A.3) becomes

eλt 〈f |1〉 = 〈f |1〉
therefore the eigenvalue must be 1.

Appendix B. Coefficients for the eigenfunctionals

We now study the matrix elements cλmn = 〈m|K̂λ|n〉 of the operator K̂λ appearing in the residues
of the resolvent (33)

〈ξ |Rρ
−(z)|ϕ〉 =

∑
λ∈?ρ

〈ξ |K̂λ|ϕ〉
λ− z

=
∑
λ∈?ρ

∑
m,n

〈ξ |m〉cλmn〈n|ϕ〉
λ− z

.

Consider the following operators on H(T ρ):

L = LP (T
ρ)

B− = LK(T
ρ) + LQ(T

ρ)

B+ = LK(T
ρ)− LQ(T

ρ).

Note that T ρ(ht ) = eLt and we have the commutation relations

[L,B+] = B+

[L,B−] = −B−
[B−, B+] = 2L.

(B.1)

From the commutation relations we have that B+L = (L + 1)B+, therefore B+eLt =
e(L+1)tB+, i.e. B+T

ρ(ht ) = et T ρ(ht )B+. By considering 〈ξ |B+R
ρ
−|ϕ〉 and using this result we

obtain

B+K̂λ = K̂λ+1B+. (B.2)

Hence B+ sends the image of K̂λ into the image of K̂λ+1. In particular B+K̂l = 0 = B+K̂l = 0
since there are no eigenvalues l + 1 and l + 1 in the set ?ρ .

Consider an eigenfunctional |f 〉 in the image ofKλ so that it satisfies T ρ(ht )|f 〉 = eλt |f 〉
and therefore

L|f 〉 = λ|f 〉.
Suppose also that it is annihilated by B+:

B+|f 〉 = 0

so that using (B.1) we get

〈n|B+|f 〉 = 0

〈n|B+B−|f 〉 = −2〈n|L|f 〉 = −2λ〈n|f 〉
for all n ∈ Z.

Representing |f 〉 by the linear combination

|f 〉 =
∑
n

αn|n〉 where αn = 〈n|f 〉
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and using the explicit expression for the matrix elements of B+ and B− [14]

−2i〈n|B+ = −(l + n)〈n− 1| − 2n〈n| + (l − n)〈n + 1|
−2i〈n|B− = (l + n)〈n− 1| − 2n〈n| − (l − n)〈n + 1| (B.3)

we get the system of linear equations

−(l + n)αn−1 − 2nαn + (l − n)αn+1 = 0

−(l + n− 1)(l + n)αn−2 − 2(l + n)αn−1 + 2(l(l + 1) + n2)αn

−2(l − n)αn+1 − (l − n− 1)(l − n)αn−2 = −4λαn.

These equations have only the trivial solution αn = 0 unless λ = l = − 1
2 + iρ or

λ = l = − 1
2 − iρ in which case they have the unique non-trivial solutions

αln = 1

(l + n)!(l − n)!
αln = (−1)n (B.4)

respectively. Hence the images of K̂l and K̂l are one dimensional.
Since B+ sends the image of K̂λ into the image of K̂λ+1 and its restriction on the image of

K̂λ has zero kernel for λ �= l, l we deduce that the images of K̂l−k and K̂l−k for all k ∈ N are
also one dimensional. The operators K̂λ where λ ∈ ?ρ may therefore be written as

K̂λ = |fλ〉〈f−λ| =
∑
m,n

|m〉aλmbλn〈n| =
∑
m,n

|m〉cλmn〈n|

and their matrix elements cλmn split into a product cλmn = aλmb
λ
n where

|fλ〉 =
∑
m

aλm|m〉 |f−λ〉 =
∑
n

bλn|n〉 (B.5)

as stated in the main text.
Combining (B.4) with (B.5) we see that aln = αln and aln = αln. This can be confirmed

from equation (32) and the expansion of Bl
m0(cosh t) at large t [21]:

Bl
m0(cosh t) =

(
2l(l!)2

√
π

1

(l + m)!(l −m)!
elt +

2l(l!)√
π
(−1)melt

)
(1 + O(e−t )). (B.6)

Using (B.6) and the symmetry relation [14]

Bl
mn(cosh t) = (l + n)!(l − n)!

(l + m)!(l −m)!
Bl
nm(cosh t)

we can find the coefficients bln and bln:

bln = 2l√
π
(l!)2 bln = 2l√

π
(l!)2(l + n)!(l − n)!.

To summarize, the functionals |fλ〉, |f−λ〉 involved in the decomposition of K̂λ for λ = l, l

have the following form:

|fl〉 =
∑
n

1

(l + n)!(l − n)!
|n〉

|fl〉 =
∑
n

(−1)n|n〉

|f−l〉 =
∑
n

2l√
π
(l!)2|n〉

|f−l〉 =
∑
n

2l√
π
(l!)2(l + n)!(l − n)!|n〉.

(B.7)
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Given the eigenfunctionals |fl〉 and |f−l〉 the eigenfunctionals |fλ〉 for the other values of
λ ∈ ?ρ may be obtained by successive applications of the operator B−:

|fλ−k〉 = Bk
−|fλ〉 (B.8)

due to the relation B−K̂λ = K̂λ−1B−, which is proved analogously to (B.2).
Similarly, the projectors can be obtained by applying the operator B+ to |f−l〉 and |f−l〉:

|f−λ+k〉 = Bk
+|f−λ〉. (B.9)

From (B.3) and the relations (B.8), (B.9) we find that

al−kn = 〈n|fl−k〉 = 〈n|Bk
−|fl〉 = O(nk)

al−kn = 〈n|fl−k〉 = 〈n|Bk
−|fl〉 = O(nk)

bl−kn = 〈n|f−l+k〉 = 〈n|Bk
+|f−l〉 = O(nk)

bl−kn = 〈n|f−l+k〉 = 〈n|Bk
+|f−l〉 = O(nk).

(B.10)

Appendix C. Convergence of the spectral decompositions

We now present the necessary condition for the convergence of the spectral decomposition (35):

〈ξ |T ρ(ht )|ϕ〉 =
∑
λ∈?ρ

eλt 〈f−λ|ϕ〉〈ξ |fλ〉. (C.1)

In particular we show it is convergent when ξ and ϕ belong to the dense subspace T
ρ of

Sρ ⊂ H(T ρ) where

T
ρ =

{
|ϕ〉 =

K∑
n=−K

cn|ρ, n〉 for some K

}
. (C.2)

First we show that each term eλt 〈f−λ|ϕ〉〈ξ |fλ〉 in (C.1) is defined for ξ and ϕ in the
subspace S

ρ :

S
ρ =

{
|ϕ〉 =

∑
n

cn|ρ, n〉 where lim
|n|→∞

cnn
q = 0 for all q ∈ N

}
. (C.3)

Note that S
ρ is invariant under T ρ(ht ). Let ξ and ϕ be given by

|ϕ〉 =
∑
n

cn|ρ, n〉 |ξ〉 =
∑
n

dn|ρ, n〉. (C.4)

Using 〈f−λ|m〉〈n|fλ〉 = aλmb
λ
n we get

|eλt 〈f−λ|ϕ〉〈ξ |fλ〉| <
∑
m,n

|eλtaλmbλncmdn|. (C.5)

The eigenvalue λ is of the form l − k or l − k so by (B.10) aλm = O(mk) and bλn = O(nk).
Hence

|eλt 〈f−λ|ϕ〉〈ξ |fλ〉| < C|eλt |
∑
m

|cmmk|
∑
n

|dnnk|

which converges due to (C.3). Therefore each term is defined for ξ, ϕ ∈ S
ρ and the

eigenfunctionals |fη〉 belong to the space S
ρ∗.

Now we show that the sum (C.1) converges for ξ, ϕ ∈ T
ρ . Since the sums (C.4) for ξ, ϕ

have only a finite number of terms it suffices to prove convergence for |ϕ〉 = |n〉 and |ξ〉 = |m〉.
In this case (C.1) reduces to (32), which converges absolutely for t > 0.
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Now we turn to the convergence of the spectral decomposition of the evolution operator
Ût (36)

〈ξ |Ût |ϕ〉 =
∑

− 1
4 −ρ2∈?2

Nρ∑
s=1

∑
λ∈?ρ

eλt 〈ξ |f ρ;s
λ 〉〈f ρ;s

−λ |ϕ〉. (C.6)

By the above considerations the terms in this series eλt 〈ξ |f ρ;s
λ 〉〈f ρ;s

−λ |ϕ〉 are defined for
ξ, ϕ ∈ ⊕− 1

4 −ρ2∈?2
S
ρ = C∞(2\G).

We will show that expansion (C.6) is convergent when ξ, ϕ belong to the subspace
T ⊂ C∞(2\G):

T =
{
|ϕ〉 =

∑
− 1

4 −ρ2∈?2

Nρ∑
s=1

K∑
n=−K

cn,ρ;s |ρ, n; s〉 for some K

}
. (C.7)

It is sufficient to determine the convergence for

|ϕ〉 =
∑

− 1
4 −ρ2∈?2

Nρ∑
s=1

cρ;s |ρ, n; s〉

|ξ〉 =
∑

− 1
4 −ρ2∈?2

Nρ∑
s=1

dρ;s |ρ,m; s〉

for which decomposition (C.6) is

〈ξ |Ût |ϕ〉 =
∑

− 1
4 −ρ2∈?2

Nρ∑
s=1

∑
λ∈?ρ

eλt cρ,sa
λ
ndρ,sb

λ
m. (C.8)

Let ϕ(τ, θ, ψ) = ϕn(τ, θ)einψ be the unwrapping of |ϕ〉. The function ϕn on 2\G/H has
the norm

‖ϕn‖2 = 1

2π

∫
F

|ϕn(τ, θ)|2 sinh τ dτ dθ F is a fundamental domain.

We may expand ϕn in the eigenfunctions χ
ρ;s
n (the unwrappings of |ρ, n; s〉) of the

operator (29):

ϕn(τ, θ) =
∑

− 1
4 −ρ2∈?2

Nρ∑
s=1

cρ,sχ
ρ;s
n (C.9)

hence

‖ϕn‖2 =
∑

− 1
4 −ρ2∈?2

Nρ∑
s=1

|cρ;s |2.

Similarly

‖ξn‖2 =
∑

− 1
4 −ρ2∈?2

Nρ∑
s=1

|dρ;s |2.

Using the fact that

∑
− 1

4 −ρ2∈?2

Nρ∑
s=1

|cρ,sdρ,s | < ‖ξn‖‖ϕn‖
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and that (32) converges absolutely we see from (C.8) that

|〈ξ |Ût |ϕ〉| =
∑

− 1
4 −ρ2∈?2

Nρ∑
s=1

|cρ,sdρ,s |
∑
λ∈?ρ

|aλnbλmeλt | < C
∑

− 1
4 −ρ2∈?2

Nρ∑
s=1

|cρ,sdρ,s | < C‖ξn‖‖ϕn‖

is bounded.
Hence taking ξ, ϕ ∈ T ensures the convergence of the spectral decomposition (C.6). Since

the unwrapping of |ρ, n; s〉 has the form χ
ρ;s
n the unwrappings of functions in T will have only

a finite number of Fourier components in ψ .
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